Indian Statistical Institute, Bangalore

M. Math. First Year

First Semester - Linear Algebra

Back Paper Exam Duration: 3 hours Max Marks 100 Date: January 03, 2018

- 1. Define the wedge powers of a vector space, and prove their existence. [20]
- 2. (a) If $S, T : V \to V$ are commuting linear operators on a vector space then show that if W is an invariant subspace for T then S(W) is also T-invariant.
 - (b) Hence, show that if $T: V \to V$ is a normal operator on an inner product space and W is a T-invariant subspace then so is W^{\perp} . [10 + 10 = 20]
- 3. (a) If G is a non-trivial finite abelian group then show that there are numbers $1 < d_1 \mid d_2 \mid ... \mid d_n$ such that G is isomorphic to the direct product of the groups $\mathbb{Z}/d_i\mathbb{Z}, 1 \leq i \leq n$.
 - (b) Show that the numbers $d_i, 1 \le i \le n$ in (a) are uniquely determined by G. [10 + 10 = 20]
- 4. (a) Let V_n be the vector space of all polynomials of degree < n (over some field). Define $T: V_n \to V_n$ by $(Tf)(x) = \frac{f(x) f(0)}{x}$. Find all the eigenvalues and eigenspaces of T.
 - (b) Let $E: V \to V$ be a linear operator on a vector space such that $E^2 = E$. Then find all the eigenvalues and eigenspaces of E. [10 + 10 = 20]
- 5. (a) Show that all the submodules of the \mathbb{Z} -module \mathbb{Z}^n are free of rank $\leq n$.
 - (b) For each $n \ge 1$, given an example of a proper submodule of \mathbb{Z}^n of rank n. [10 + 10 = 20]